ИССЛЕДОВАНИЕ МЕТОДОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ ПОСТРОЕНИЯ КЛАССИФИКАЦИОННОЙ МОДЕЛИ УСПЕШНОСТИ РЕАЛИЗАЦИИ ТРАНЗАКЦИИ В СЕТИ ОБЩЕКАНАЛЬНОЙ СИГНАЛИЗАЦИИ


УДК 004.8
DOI: 10.26102/2310-6018/2019.26.3.023

А.В. Росляков , С.В. Пальмов, Е.В. Глушак


Телекоммуникации оказывают определяющие влияние на развитие человечества. Повышение эффективности их функционирования может быть реализовано различными способами. Искусственный интеллект позволяет поспособствовать решению упомянутой задачи. Однако существует проблема выбора метода искусственного интеллекта, в наибольшей степени подходящего для решения конкретной задачи в определенной предметной области. Это обусловлено большим числом существующих инструментов, доступных в рамках искусственного интеллекта, а также значительным разнообразием ситуаций, требующих учета тех или иных ограничений и нюансов при их анализе. Авторы статьи провели эксперимент, имевший своей целью упростить решение заявленной проблемы выбора в том случае, когда необходимо построить классификационную модель, определяющую успешность реализации транзакции в сети общеканальной сигнализации ОКС №7 при предоставлении голосовых услуг и услуг СМС в сети мобильной связи с использованием перенесенных мобильных абонентских номеров. Были проанализированы возможности пяти популярных методов: дерево решений, метод опорных векторов, случайный лес, нейронная сеть и наивный байесовский классификатор. Классификационные модели, создаваемые перечисленными методами, проверялись на соответствие двум требованиям: способность формировать достоверные прогнозы относительно возможности реализации транзакции и стабильность получаемых результатов. Качество оценивалось посредством метрик F-мера, специфичность и среднеквадратическое отклонение. В эксперименте использовались реальные обезличенные статистические данные, полученные в сети крупного оператора мобильной связи. После проведения соответствующих расчетов и сравнений, было установлено, что наиболее предпочтительным представляется использование метода «дерево решений», поскольку он формирует наиболее качественные классификационные модели.

Ключевые слова: искусственный интеллект, телекоммуникации, F-мера, дерево решений, классификационная модель, ОКС №7.

Полный текст статьи:
RoslyakovSoavtori_3_19_1.pdf