ИССЛЕДОВАНИЕ СВОЙСТВ СООБЩЕСТВ ИГРОКОВ И ФУНКЦИЙ ВЫИГРЫША В ИГРАХ С НЕПРОТИВОПОЛОЖНЫМИ ИНТЕРЕСАМИ

УДК 519.83:519.81

Т.В. Меньших, В.И. Новосельцев


При решении многих прикладных задач используются методы теории игр. В частности, при принятии управленческих решений требуется согласование различных аспектов решений, за которые отвечают специалисты разного профиля. Это приводит к необходимости использования игр с непротивоположными интересами и нахождения для них равновесий по Дж. Нэшу. Решение указанной задачи для частного случая игр с иерархическим вектором интересов определяется теоремой Гермейера и Вателя. Однако, при доказательстве теоремы, не был учтен целый ряд аспектов. В частности, неопределенны условия построения иерархического дерева групп игроков и в неполной мере описаны свойства функции выигрыша для этих групп. В данной работе предлагается ввести понятия целей игроков и на этой основе построить структурно-параметрическую модель сообщества игроков, представляющую собой нечеткий граф с множеством вершин, соответствующих игрокам, и дуг, отражающих совпадение целей игроков. Веса дуг определяются функциями принадлежности нечетких множеств, описывающих значимости целей для игроков. Цвета дуг соответствуют целям игроков. После этого вводится понятие цветной клики и разрабатывается алгоритм построения иерархической структуры групп на основе последовательного нахождения цветных клик. Далее, на основе анализа доказательства теоремы Гермейера и Вателя, показывается, что функция выигрыша группы игроков должна быть непрерывной. Следствием этого является исключение случаев, использования дискретных (в частности, целочисленных) ресурсов.

Ключевые слова: игры с непротивоположными интересами, равновесие по Нэшу, цели игроков, структурно-параметрическая модель сообщества, иерархическая структура групп игроков, функция полезности группы игроков.

Полный текст статьи:
MenshikhNovoseltsev_4_18_1.pdf