ПРОГНОЗИРОВАНИЕ НЕСТАЦИОНАРНЫХ ВРЕМЕННЫХ РЯДОВ НА ОСНОВЕ МУЛЬТИВЕЙВЛЕТНОЙ ПОЛИМОРФНОЙ СЕТИ

УДК 006.72

С.Н. Верзунов, Н.М. Лыченко


Для прогнозирования нестационарных временных рядов существует много методов и моделей, однако, проблема точности и адекватности прогноза таких рядов по-прежнему является актуальной. В настоящей статье предложена новая модель прогноза, основанная на мультивейвлетной сети с дополнительными настраиваемыми параметрами, названной полиморфной. Эффективность предложенной модели сравнена с хорошо известными моделями прогноза временных рядов: моделью авторегрессионного интегрированного скользящего среднего, многослойным персептроном и гибридной моделью, комбинирующей обе указанные модели. В качестве экспериментальных данных были использованы три реальных, хорошо известных в статистике временных ряда: данные о солнечных пятнах Вольфа, данные о популяции канадской рыси и данные об обменном курсе британского фунта к доллару США. Сравнение показало, что предложенная модель прогноза на основе мультивейвлетной полиморфной сети обладает меньшей ошибкой прогноза для всех рассмотренных рядов. Это достигнуто благодаря введению дополнительных настраиваемых параметров в вейвлет-сеть, которые позволяют лучше адаптироваться к нестационарной природе временных рядов. Кроме того, наличие в структуре предложенной вейвлет-сети прямых связей между вейвлет-нейронами входного и выходного слоев улучшает ее прогностические свойства для временных рядов, имеющих линейную составляющую. Предложенная технология может быть использована для прогноза временных рядов, генерируемых динамически-ми процессами различной физической природы.

Ключевые слова: прогнозирование, нестационарные временные ряды, мультивейвлетная сеть, дополнительные настраиваемые параметры, ARIMA-модель, искусственная нейронная сеть, гибридная модель.

Полный текст статьи:
VerzunovLychenko_4_18_1.pdf