UDC 004.032.26

I.L.Kashirina, K.A.Fedutinov

The article deals with the organization of intelligent intrusion detection and detection systems. Research in the field of development of information security tools shows that today the most promising and flexible solutions are based on machine learning methods that can prevent damage from intrusions that were not noticed by standard means of combating computer attacks. In the proposed approach, it is proposed to use a sequential reverse search with a return to select significant features and the Fuzzy neural network ARTMAP to detect and diagnose attacks. Network Fuzzy АRTMAP is able to adapt to the dynamics of computer attacks and allows you to recognize intrusions in the information system in real time, without the need to load datasets in batches. This makes it possible to automate the analysis of safety protocols in a continuous mode. The extensive use of ART family networks in intrusion detection tasks makes it possible to consider the search for approaches that improve their performance. In this paper, the control hyperparameters network Fuzzy ARTMAP proposed to adjust automatically with the use of a genetic algorithm According to the results of the computational experiment, the reduced set of characteristics reduces the computation time by 21%. The accuracy of the classification algorithm was 100% and 99.89% for the detection stage and the diagnostic stage, respectively.

Keywords: neural network, Fuzzy ARTMAP, genetic algorithm, intrusion detection, intelligent information security systems.

Full text: