ПРИМЕНЕНИЕ СЕТИ FUZZY ARTMAP В ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМАХ ОБНАРУЖЕНИЯ ВТОРЖЕНИЙ

УДК 004.032.26

И.Л. Каширина, К.А. Федутинов


В статье рассмотрены вопросы организации интеллектуальных систем обнаружения и диагностики вторжений. Исследования в области разработки инструментов обеспечения информационной безопасности показывают, что на сегодняшний день наиболее перспективные и гибкие решения базируются на методах машинного обучения, позволяющих предотвратить ущерб от вторжений, не замеченных стандартными средствами борьбы с компьютерными атаками. В предлагаемом подходе предлагается использовать последовательный обратный поиск с возвращением для отбора значимых признаков и нейронную сеть Fuzzy АRТMAP для обнаружения и диагностики атак. Сеть Fuzzy АRТMAP способна адаптироваться к динамике компьютерных атак и позволяет распознавать вторжения в информационные систему в режиме реального времени, при этом не нужно подгружать наборы данных пакетно. Это дает возможность автоматизировать анализ протоколов безопасности в непрерывном режиме. Широкие возможности использования сетей семейства ART в задачах обнаружения вторжений позволяют считать актуальным поиск подходов, позволяющих улучшить их эксплуатационные характеристики. В данной статье управляющие гиперпараметры для сети Fuzzy АRТMAP предлагается настраивать в автоматическом режиме с использованием генетического алгоритма. По результатам вычислительного эксперимента редуцированный набор признаков уменьшает время вычислений на 41%. Точность алгоритма классификации составила 100% и 99,89% для стадии обнаружения и стадии диагностики соответственно.

Ключевые слова: нейронная сеть, Fuzzy ARTMAP, генетический алгоритм, обнаружение вторжений, интеллектуальные системы защиты информации.

Полный текст статьи:
KashirinaFedutinov_3_18_1.pdf