ПРИМЕНЕНИЕ НЕЙРОСЕТЕВОГО ПОДХОДА К ЗАДАЧАМ ЛОГИЧЕСКОЙ ОБРАБОТКИ ДАННЫХ И ПОСТРОЕНИЕ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ ПРИНЯТИЯ РЕШЕНИЙ

УДК 519.71

Д.П. Димитриченко, Р.А. Жилов


Необходимость уменьшения размерности больших массивов данных при сохранении логической структуры, а также, выявление скрытых закономерностей и удаление информационных шумов и избыточности в описании объектов диагностики (распознавания) приводит к необходимости построения эффективного метода классификации объектов в слабо формализуемых областях знаний. Логические функции, описывающие объекты при помощи переменнозначных предикатов, позволяют выявить скрытые закономерности и устранить избыточность в описании объектов. Упорядоченные при помощи переменнозначных логических функции классы объектов являются основой для формирования структуры когнитивных карт. Целью настоящего исследования является создание алгоритма для построения логической нейронной сети на основе переменнозначной логической функции и обоснование возможности применения полученных результатов при построении когнитивных карт. Обоснована теоретическая возможность и приведены алгоритмы, позволяющие осуществить переход от переменнозначных логических функций к когнитивным картам при помощи нейросетевого подхода. Результатом данной работы является процедура построения когнитивной карты с применением логических нейронных сетей, построенных на основе переменнозначных логических функции. Преимуществом полученной когнитивной карты является возможность функционирования в рамках нечеткой логики.

Ключевые слова: предикат, значность предиката, переменнозначная логическая функция, логическая нейронная сеть, когнитивная карта, кластерный анализ, нейронная сеть.

Полный текст статьи:
DmitrichenkoZhilov_2_18_1.pdf