МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ДИНАМИЧЕСКИМИ СИСТЕМАМИ С ПОМОЩЬЮ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

УДК 519.97, 519.6, 007.681.5

Е.А. Андреева,В.М. Цирулева


В настоящее время важной технической и теоретической задачей является разработка методов и способов управления сложными динамическими объектами, использующими как традиционные способы управления динамическими системами (принцип максимума Понтрягина, метод синтеза управления Беллмана, теорию автоматического регулирования), так и методы, основанные на обучении искусственных нейронных сетей, такие как методы с эталонной моделью, прогнозирующее нейроуправление, метод обратного распространения ошибки и др. Нейроуправление можно использовать в управлении истребителями, асинхронными электроприводами и компьютерами. Для разработки интеллектуальных систем управления методы искусственного интеллекта могут быть объединены с достижениями классической теории оптимального управления. В статье показана возможность объединения классических методов оптимального управления и методов оптимизации, таких как принцип максимума Понтрягина для систем с запаздывающим аргументом, методы динамического программирования и др., с методами, использующими искусственные нейронные сети. Использование технологий нейроуправления вызвано существованием неконтролируемых шумов и помех. Преимущество нейронных сетей заключается в возможности их обучения, при этом необходим правильный выбор функции активации, учет запаздывания при передаче сигнала между нейронами и формирование входного сигнала. Целью статьи является разработка и построение обобщенной математической модели управления сложной динамической системой автоматического управления с помощью методов математической теории оптимального управления, методов оптимизации и нейронных сетей; разработка общего гибридного алгоритма для получения оптимальных значений управляющих функций и весовых коэффициентов нейронной сети, оптимизирующих заданный функционал. Созданная модель может быть использована для различных функций активации, с учетом запаздывания и ограничений на управляющие параметры. Разработан алгоритм построения численного решения в зависимости от значений параметров модели, метода и вида функций активации. В завершении статьи приведены результаты вычислительного эксперимента.

Ключевые слова: оптимальное управление, многослойная искусственная нейронная сеть, ансамбль нейронов, функция активации, математическая модель, система дифференциальных уравнений с запаздывающим аргументом, многокритериальная задача, принцип максимума с запаздывающим аргументом, дискретная задача оптимального управления.

Полный текст статьи:
AndreevaZiruleva_2_18_1.pdf