ОТБОР ИНФОРМАТИВНЫХ РЕГРЕССОРОВ С УЧЕТОМ
МУЛЬТИКОЛЛИНЕАРНОСТИ МЕЖДУ НИМИ В РЕГРЕССИОННЫХ МОДЕЛЯХ КАК ЗАДАЧА ЧАСТИЧНО-БУЛЕВОГО ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

УДК 519.862.6

М. П. Базилевский


Статья посвящена проблеме отбора информативных регрессоров в линейной регрессионной модели, точное решение которой может быть гарантировано либо полным перебором всех возможных вариантов регрессий, либо решением специальным образом сформулированной задачи математического программирования с булевыми переменными. Часто задача отбора информативных регрессоров решается с использованием лишь одного критерия адекватности, например, минимизируются только ошибки модели. Но в случае оценивания регрессии с помощью метода наименьших квадратов необходимо стремиться не только к увеличению качества аппроксимации, но и к соблюдению условий теоремы Гаусса – Маркова, одним из которых является отсутствие линейной зависимости между объясняющими переменными. Если это условие не выполняется, то говорят, что имеет место мультиколлинеарность. Таким образом, при отборе информативных регрессоров целесообразно решать двухкритериальную задачу – стремиться максимизировать качество аппроксимации и одновременно минимизировать мультиколлинеарность между объясняющими переменными. Поскольку точных количественных критериев для определения наличия / отсутствия мультиколлинеарности не существует, в данной работе на основе известной рекомендации сформулирован критерий верхней границы мультиколлинеарности. С использованием этого критерия предложены четыре возможные постановки задачи отбора информативных регрессоров, каждая из которых сведена к задаче частично-булевого линейного программирования. Для демонстрации предложенного математического аппарата разработана пробная версия специализированного программного комплекса, с помощью которого решена задача моделирования грузооборота Красноярской железной дороги.

Ключевые слова: регрессионная модель, метод наименьших квадратов, мультиколлинеарность, отбор информативных регрессоров, задача частично-булевого линейного программирования.

Полный текст статьи:
Bazilevskiy_2_18_1.pdf